	Software system Architecture Description of XXX

	Doc #
	Version: 2024
	Page 1 / 1



[image: image1.png]


[image: image2.jpg]



TABLE OF CONTENTS
31
Introduction

1.1
Document overview
3
1.2
Abbreviations and Glossary
3
1.2.1
Abbreviations
3
1.2.2
Glossary
3
1.3
References
3
1.3.1
Project References
3
1.3.2
Standard and regulatory References
3
1.4
Conventions
4
2
Architecture overview
4
3
Hardware architecture
4
3.1
Hardware architecture overview
4
3.2
Hardware Component 1
4
3.3
Hardware Component 2
5
3.4
Hardware Component 3
5
4
Software architecture
5
4.1
Software architecture overview
5
4.2
Software Component 1
5
4.3
Software Component 2
5
4.4
Software Component 3
5
5
Graphical User Interface architecture
5
5.1
GUI framework
6
5.2
GUI component 1
6
5.3
GUI component 2
6
6
Security architecture
6
6.1
Data flow diagrams
6
6.2
Other secure architecture views
6
7
SOUP and supported software
6
7.1
SOUP
6
7.2
Supported software
7
8
Dynamic behavior of architecture
7
8.1
GUI Workflow / Sequence 1
7
8.2
GUI Workflow / Sequence 2
7
8.3
Workflow / Sequence 1
8
8.4
Workflow / Sequence 2
8
8.5
Security Use Case 1
8
8.6
Security Use Case 2
8
9
Justification of architecture
8
9.1
System architecture capabilities
8
9.2
Network architecture capabilities
8
9.3
Architecture for security
8
9.4
Risk analysis outputs and software safety class segregation
9
9.5
Human factors engineering outputs
9
9.6
Regulation on personal data
9
9.7
SOUP integration
9
10
Requirements traceability
9
10.1
Software requirements
9
10.2
Software security requirements
10


1 Introduction
1.1 Document overview

This document describes the architecture of XXX system.

It describes:

· A general description, global system view, of the system,
· The hardware architecture on which runs the software,

· The software architecture, layers and top-level components,
· The security architecture of software, with security views,

· The Graphical User Interface architecture,

· The justification of technical choices made,
· The traceability between the architecture and the system requirements.
This document covers the software system and software item levels of IEC 62304
1.2 Abbreviations and Glossary

1.2.1 Abbreviations

Add here abbreviations
COTS: Components Off the Shelf (software industry acronym)

OTSS: Off The Shelf Software (FDA acronym)

SOUP: Software Of Unknown Provenance (IEC 62304 acronym)
1.2.2 Glossary

Add here words definitions, especially the ones below:
Software Item (IEC 62304),

Software Unit (IEC 62304),
Maintained Software (IEC 81001-5-1),

Supported software (IEC 81001-5-1),
About Required Software (IEC 81001-5-1), see this article:
https://blog.cm-dm.com/post/2023/02/20/Maintained-software%2C-Supported-software%2C-Required-software%2C-and-SOUP
1.3 References

1.3.1 Project References

	#
	Document Identifier
	Document Title

	[R1]
	ID
	Add your documents references.

One line per document


1.3.2 Standard and regulatory References

	#
	Document Identifier
	Document Title

	[STD1]
	
	Add your documents references.
One line per document


1.4 Conventions

Add here conventions

For example for diagrams.
COTS, OTSS and SOUP don’t refer to the same concept, i.e. software delivered by 3rd party that wasn’t developed with a regulatory and/or normative compliant development process.
We deliberately use the term “SOUP”, to focus on IEC 62304 compliance.
COTS and OTSS refer to software present at runtime or not. E.g.: SW dev tools are COTS or OTSS. Libraries incorporated in the released SW are COTS or OTSS.
SOUP are only present at runtime: SW dev tools are NOT SOUP. Libraries incorporated in the released SW are SOUP.
For IEC 81001-5-1 compliance, we consider SOUP and maintained software equivalent. Supported software is not SOUP.
2 Architecture overview
Give a general description of the system, with information relevant to the design team:
· In what environment it works (home, near patient bed, operating room …)

· Who the users are,
· What it is for,

· The main functions,

· The main interfaces, inputs and outputs,

· The main components or packages.

If your software is integrated in a larger system, you may reference a document that describes this system. Or you may describe it here, to document what is medical device and what is not.
This is especially important for a SaMD integrated within a larger heath software system not qualified as MD.
Add a global view of your system, usually called architectural design chart or global system view.
3 Hardware architecture 

3.1 Hardware architecture overview
If relevant, describe the hardware components on which software runs and their interactions/relationships

Use components diagrams, deployment diagrams, network diagrams, interface diagrams…
Four cloud-based software, this section may not be relevant
This may not be relevant for SaMD, or may be replaced by a deployment architecture.

3.2 Hardware Component 1
Describe the content of each hardware component in the architecture

Optional, you may not do it if your software is not class C according to IEC 62304
The description shall contain:
· Its identification

· The purpose of the component

· The software component it receives

· Its technical characteristics: type of machine, CPU, RAM, disk and so on.

· Its network hardware interfaces
3.3 Hardware Component 2
Repeat the pattern for each top-level component.
3.4 Hardware Component 3
Repeat the pattern for each top-level component.
4 Software architecture
4.1 Software architecture overview
Describe the top-level software components and their interactions/relationships.
The description goes further in details, compared to the global system view

Use UML package diagrams and/or layer diagrams and/or interface diagrams or any other architecture modelling convention.
Describe also the operating systems or containerization system on which the software runs.

Even if your software is in class A, this is required to answer to IEC 81001-5-1 requirements on architectural design.
If your software interfaces deserve to be documented in details, you can also use the Interface Requirement Specification – Interface Design Specification template. DICOM or HL7 interfaces would be good candidates for such separate document.
4.2 Software Component 1
Describe the content of each top-level software component in the architecture

Optional, you may not do it for 2 rationales:
1. Either your software is class A according to IEC 62304
2. Or you describe each top level component in a SDD.
The description should contain:
· Its identification

· The purpose of the component,

· Its interfaces with other components (either use the Interface Requirement Specification – Interface Design Specification template or copy paste bribes of this template here if the interface doesn’t deserve a separate document)
· Its network interfaces,
· The hardware resources it uses, for example: average RAM usage, peak RAM usage and peak frequency and duration, disk space for permanent data, disk space for cache data, average CPU usage, peak CPU usage and peak frequency and duration …

4.3 Software Component 2
Repeat the pattern for each top-level component.
4.4 Software Component 3
Repeat the pattern for each top-level component.
5 Graphical User Interface architecture

This section can be removed if you prefer having GUI components in the Software architecture, like other components, … or if your software doesn’t have GUI.
5.1 GUI framework
As an introduction to GUI, you can explain what kind of architecture (MVC, MVP, MVVM, whatever :-)) and/or GUI framework you used.
5.2 GUI component 1
You can either describe the GUI components here or add them to the software architecture section above.

5.3 GUI component 2
You can either describe the GUI components here or add them to the software architecture section above.

6 Security architecture
This section is required, even for IEC 62304 class A software.

Add here views and comments explaining:

· how the assets are protected within the architecture
· how the defense in depth principle is applied

· and how software interfaces are secured.
You can use the recommendations found in Appendix 2. Submission Documentation for Security Architecture Flows of the FDA Guidance on Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions

6.1 Data flow diagrams

Document assets, trust boundaries, interfaces of the device externally accessible and, if possible, interfaces from connected third party software accessing your interfaces. You may use data flow diagrams for this purpose.

6.2 Other secure architecture views

Add here the views required by the FDA Cybersecurity Guidance:
· Global System View (this can already be present in section 2 of this document),
· Multi-Patient Harm View,
· Updatability / Patchability View,
· and Security Use Case Views.

Security Use Case Views can alternatively be documented in the dynamic behavior below.

And have a closer look at Appendix 2.B of FDA Guidance on Cybersecurity in Medical Devices: Quality System Considerations and Content of Premarket Submissions.
7 SOUP and supported software
7.1 SOUP

If you use SOUP (Software Of Unknown Provenance), list them here. You can also present the bullet points below in colums in a table with one line for each SOUP.
For each SOUP, describe:
· Its identification and version
· Its purpose

· Where it comes from: manufacturer, vendor, university …
· Whether it is maintained by a third party or not

· If this is an executable,

· What hardware / software resources it uses

· Whether it is insulated in the architecture and why

· Its interfaces and data flows

· Which SOUP functions/API the software uses

· How the SOUP is integrated in the software

· What hardware/software resources it requires for proper use

· Where to get the bugs/updates/security issues
Note: have a look at FDA Guidance « Off-The-Shelf Software Use in Medical Devices » to determine if you need specific or special documentation for your SOUP.
If there is a list of known bugs for your SOUP, you may add here this list with a review of their consequences in terms of software failure and patient safety. If there are concerns about known bugs, they should be treated by the risk management process.
7.2 Supported software
If your software needs supported software (see IEC 81001-5-1), list them here. You can also present them in a table.
For each supported software, describe:
· Its identification and version
· Its purpose

· Its manufacturer, vendor, university …
Note: contrary to SOUP, supported software isn’t incorporated (see definition of SOUP) in your medical device. Rule of thumb, if you don’t deliver a software but is present in your installation prerequisites and provided by the user / client organisation, it’s probably a supported software. Consequence: supported software is hardly present in embedded software architecture.
8 Dynamic behavior of architecture

The architecture was designed to answer to functional requirements.

For each main function of the system, add a description of the sequences / data flow that occur.

Use sequence diagrams, collaboration diagrams,…
Don’t forget workflows with 3rd parties but also with you other - non-medical device - software, like server publishing updates, maintenance application, … 

8.1 GUI Workflow / Sequence 1

Describe here the workflow / sequence of GUI actions
This workflow could come from a UX design tool. Then reference the document output from this tool or copy-paste it here.
8.2 GUI Workflow / Sequence 2

Describe here the workflow / sequence of GUI actions
This workflow could come from a UX design tool. Then reference the document output from this tool or copy-paste it here.
8.3 Workflow / Sequence 1

Most of workflows involve GUI. Some may not, like on the server-side.
Describe here the workflow / sequence of a main function 

For example, the user queries data, what happens, from his terminal to the database.
8.4 Workflow / Sequence 2

Repeat the pattern for each main function of the system

8.5 Security Use Case 1

Describe here the workflow / sequence of a security function 

For example, the user wants to log in, what happens, from the login prompt to the verification of security credentials.
8.6 Security Use Case 2

Repeat the pattern for each security function of the system

9 Justification of architecture

9.1 System architecture capabilities

Describe here the rationale of the hardware / software architecture in terms of capabilities:
· Performance (for example response time, user mobility, data storage, or any functional performance which has an impact on architecture)

· User / patient safety (see 8.3 and 8.4)

· Protection against misuse (see 8.4)
· Maintenance (cold maintenance or hot maintenance),

· Adaptability, flexibility

· Scalability, availability

· Backup and restore

· Fault tolerance, redundancy, emergency stop, recovery after crash …

· Administration,

· Monitoring,
· Audit and audit logs
· Internationalization
· Decommissioning

9.2 Network architecture capabilities

If the medical device uses/has a network, describe here the rationale of the hardware / network architecture:
· Bandwidth

· Network failures

· Loss of data

· Inconsistent data

· Inconsistent timing of data

· Network security (if not described below)

9.3 Architecture for security

Explain in this section the decisions taken to secure the architecture:

· Defense in depth architecture: how security requirements are assigned to each layer of defense. You may reference the security traceability matrix at the bottom of the document
· Secure design best practices: least privileges, economy of mechanisms, secure design patterns…
· Segregation of software items between trust boundaries.
This is required by IEC 81001-5-1 and FDA
9.4 Risk analysis outputs and software safety class segregation
If the results of risk analysis have an impact on the architecture, describe here for each risk analysis output what has been done to mitigate the risk in the architecture.
Especially software segregation b/w high risk SW and lower risk SW.
This is required if you have software sub-system in class C and other sub-system in lower classes.
Use diagrams, if necessary, like architecture before risk mitigation (e.g.: without segregation) and architecture after risk mitigation (e.g. with segregation), to explain the choices.
9.5 Human factors engineering outputs

If (by any chance) the results of human factors analysis have an impact on the architecture, describe here for each risk output what has been done to mitigate the risk in the architecture.
This is very unlikely. Remove this section if not relevant
9.6 Regulation on personal data

If HIPAA or EU Regulation 2016/679 (GDPR) are applicable, and if relevant, describe here how the architecture is compliant to these regulations. For GDPR, see articles 25 and 32.
9.7 SOUP integration

If the software architecture has a particular structure dedicated to SOUP integration, it can be described here. For example, a wrapper of the SOUP, or an external process + a socket communication, …
10 Requirements traceability

10.1 Software requirements

Add a table with traceability of components of this document with software requirements.
	Requirement
	Component
	Comment

	REQ-001

The device shall do foo
	COMPO-001: foo maker
	COMP-001 does foo.

	REQ-001

The device shall do foo
	COMPO-002: foo checker
	COMP-002 verifies foo result.


This may be a difficult job. A high-level function is usually handled by many components. In this case, quote only the component(s) which has(have) the major role.
Remember also that this traceability isn’t required by IEC 62304 and only suggested in the note found in section 5.3.6. However, it is warmly recommended in class C. It is also recommended in FDA Guidance on Content of Premarket Submissions for Device Software Functions.
10.2 Software security requirements

Add a table with traceability of components participating to the implementation of security requirements.
Note that a similar table should be present in hardware design documentation if security requirements are implemented at hardware level.
	Requirement
	Component
	Comment

	REQ-SEC-001

The device shall verify foo data authenticity
	COMPO-003: foo data authentication
	COMP-003 manages authentication of foo data


	REQ-SEC-002
The device shall verify foo data integrity
	COMPO-003: foo data integrity
	COMP-003 manages integrity verification of foo data



Note: This traceability matrix at architecture level is a way to address IEC 81001-5-1 requirements about secure architecture, for requirements related to cybersecurity only.
Thank-you for downloading the


System Architecture Document Template!








More templates to download on the:





� HYPERLINK "http://blog.cm-dm.com/pages/Software-Development-Process-templates" ��Templates Repository for Software Development Process (click here)�





Or paste the link below in your browser address bar:


http://blog.cm-dm.com/pages/Software-Development-Process-templates





This work is licensed under the:


Creative Commons Attribution-NonCommercial-NoDerivs 3.0 France License: http://creativecommons.org/licenses/by-nc-nd/3.0/fr/





Waiver:


You can freely download and fill the templates of blog.cm-dm.com, to produce technical documentation. The documents produced by filling the templates are outside the scope of the license. However, the modification of templates to produce new templates is in the scope of the license and is not allowed by this license.





To be compliant with the license, I suggest you to keep the following sentence at least once in the templates you store, or use, or distribute:


This Template is the property of Cyrille Michaud License terms: see http://blog.cm-dm.com/post/2011/11/04/License





Who am I? See my linkedin profile:


http://fr.linkedin.com/pub/cyrille-michaud/0/75/8b5





You can remove this first page when you’ve read it and acknowledged it!








This Template is the property of Cyrille Michaud

License terms : see http://blog.cm-dm.com/post/2011/11/04/License

