	Software Test Plan of XXX

	Doc #
	Version: 2024
	Page 1 / 1



[image: image1.jpg]


[image: image2.png]



TABLE OF CONTENTS
31
Introduction

1.1
Document overview
3
1.2
Abbreviations and Glossary
3
1.2.1
Abbreviations
3
1.2.2
Glossary
3
1.3
References
3
1.3.1
Project References
3
1.3.2
Standard and regulatory References
3
1.4
Conventions
3
2
Test environment
4
2.1
Integration and factory test site
4
2.1.1
Hardware test Platform
4
2.1.2
Software test tools
5
2.1.3
Security test tools
5
2.1.4
Test Data and documentation
5
2.1.5
Other test materials
5
2.1.6
Installation, set-up, and maintenance
6
2.1.7
Personnel
6
2.1.8
Test platform security and privacy
6
2.2
Customer/ Field test site
6
3
Tests identification
7
3.1
Testing phases
7
3.2
Automated unit Tests
7
3.3
Automated integration and verification Tests
7
3.4
Test categories
7
3.5
Test progression
7
3.6
Test coverage
8
3.7
Data recording, post-processing, and analysis
8
3.8
Test identification and content
8
4
Planned tests
10
4.1
Tests Phase xxx
10
4.1.1
Tests coverage
10
4.1.2
Planned tests
10
4.2
Tests Phase yyy
10
4.3
Tests Phase zzz
10
5
Tests schedules
11
6
Verification methods
12
7
Requirements traceability
14


1 Introduction
1.1 Document overview
This document is the software test plan of the XXX software development project. It contains the list of tests, which are executed during the phases of XXX integration and verification:

· Software Integration tests,

· Software Verification tests,

· Software cybersecurity tests.

Some sections of this document are about the organization of tests and may already be described in the project management plan. If so, reference the matching section in the project management plan.
Integration and verification tests may be merged in a single phase. If so, adapt the document as appropriate.
Cybersecurity tests may also be merged with verification tests. However, penetration tests are performed by a team independent from dev / test / QA teams. Thus, they are documented in a separate pen test plan / pen test report, written by this independent team.
1.2 Abbreviations and Glossary

1.2.1 Abbreviations

Add here abbreviations
1.2.2 Glossary

Add here words definitions
1.3 References

1.3.1 Project References

	#
	Document Identifier
	Document Title

	[R1]
	ID
	Add your documents references.

One line per document


1.3.2 Standard and regulatory References

	#
	Document Identifier
	Document Title

	[STD1]
	
	Add your documents references.
One line per document


1.4 Conventions

Add here conventions

2 Test environment

This section describes the environment of tests, from the point of view of organization and logistics. It is intended to ensure the smooth progress of tests (bugs apart) on each site.

Assumption in this template: there are two test sites: one in your offices and one on the field. Duplicate the sub-sections below if there are more than two sites.
2.1 Integration and factory test site

2.1.1 Hardware test Platform

Describe where the test platform is located and opening hours, if necessary.
If by chance there are specific requirements about power supply, room, air conditioning, don’t forget them (they may also be described outside this document. That’s not really the job of software developers!).

If virtualized or cloud infrastructure, the underlying hardware platform may be relevant, especially for stress tests:

Describe the hardware used to test if relevant (quantity of CPU, GPU, RAM, SSD, Network bandwidth …)

Describe the frontend configuration:

· PC,

· Mobile,

· Specific

· For mobile: sensors properties may be important (camera, mike, depth sensors, GPS …)

If on-premises platform: Describe the hardware used to test your software. Identify accurately the hardware items:
· If standard computers and servers:
· Hardware configuration

· Processor

· Memory

· Hard disk

· Network connections

· Wireless capabilities: Wifi, bluetooth

· If you use specific hardware (hardware simulator of a machine that you don’t have, hardware delivered by your customer or a 3rd party, electronic card, a medical device …)

· Their purpose

· Name

· Manufacturer

· Configuration, version
· Firmware version
· Lot number, serial number
· Anything else …

· Consumables
· CDROM, memory sticks, tapes …

· Printer cartridges, paper …
You may draw a deployment diagram; define a network address plan, electric power supply plan, a room plan …
2.1.2 Software test tools

If virtual infrastructure: describe the software backend configuration used to test software, for example (relevant or not for your case):

· Virtual machines,

· Orchestrator,

· Database,

· Logging,

· Analytics,

· Scaling…

Identify accurately the software used for test:
· OS‘s and service packs

· OS drivers (if specific for you)

· Backup / recovery tools

· Web, blogs, CMS, Databases engines,

· Memory, disk usage, CPU, and network analysers,

· Test coverage or test management tools

· Simulator, data generator of software or hardware that you don’t have

· Any tiny (or big) software made by you to do the tests
For simple projects, most of these may be tools provided with the OS (df, du, ps, top, dmesg, taskmanager, control panel …), specific tools (wireshark …) or consumer products (open office …).

These tools can also be cloud services. E.g.: a test management tool.
Describe also the bug repository tool and the way bugs are collected.
2.1.3 Security test tools

For security tests, list the tools that you use.
This list shall be consistent with the security testing strategy present in the project management plan.

This list can also be present in the software development plan. In this case, add here a reference to this list.
2.1.4 Test Data and documentation

Describe the sets of data used during tests. Their identification, structure, content, location, storage, (structure and content may already be described in the conception documents), 

· Input files,

· Data files,

· Scripts to generate data,

· Output files, log files
Describe which documentation is delivered for the tests (eg Software tests description, Instructions For Use …), if it is printed or online. And where this documentation is located.
2.1.5 Other test materials

If specific hardware is required: paper in exotic format, a stopwatch, a ruler, a compass, a willy waller 2006

And also pizzas, bier, red bull …
2.1.6 Installation, set-up, and maintenance

If necessary, describe the installation and set-up of the test platform, before its use.

Describe also maintenance operations, if any. Think about backup and restore.
2.1.7 Personnel

If necessary, describe the persons or professional profiles of persons who do the tests, their number, the special skills required.
2.1.8 Test platform security and privacy
If necessary, describe the security provisions to protect the test platform:

· Building security: doors, badges,

· Administrative security: access grants,

· Hardware security: firewalls, network isolation,

· Software security,

· Data privacy.
This can also be described in an information security plan or in the project management plan.
2.2 Customer/ Field test site

Repeat the pattern above
If your product is tested in a health care centre, or if your customer is a medical device manufacturer, have in mind that you may provide your customer with hardware, software, data and documentation. You may install it and maintain it. His opening hours may be constrained; his personnel shall have specific qualifications …

If you work directly with practicians (of your medical advisory board, for example), who are going to test your product in their offices, some sub-sections may not be relevant, focus on how tests input/output data are managed, how tests logs and bugs reports are collected.
3 Tests identification

3.1 Testing phases

This test plan defines all tests to verify all requirements of XXX software in the following successive testing phases:
· Unit tests,

· Integration tests,

· Factory tests,
· Security tests,
· End-user or Customer tests.

Change the list to fit your software development project.
Requirements are defined in SRS, ref XXX.

3.2 Automated unit Tests

Optional, discard this section if you don’t use it 
Automated unit tests are usually run on the software development platform, by the CI/CD tool. Either describe here how and when these tests are run or refer to the development plan.
Note 1: the purpose of this section is to describe the scheduling of automated unit tests when a build (nightly, non-stable, or stable) is run. E.g: every night, all automated unit tests are run using Jenkins. The automatic test results are sent to XXX for review.
Note 2: Automated unit tests scheduling by CI/CD when a changeset is pushed / merged to the repo from a developer branch should be described in the CI/CD section of the software development plan.
3.3 Automated integration and verification Tests

Optional, discard this section if you don’t use it
Describe the scheduling of automated tests on the test platform. Automated test may be run on a specific test platform instance.
3.4 Test categories

Optional, discard this section if you don’t use it
Tests are distributed in categories, depending on the tests performed:

· Risk mitigation tests,

· Human factors engineering tests,

· Main functions,

· Response time,
· Data exchange
· …

Add your categories to the list, but keep the first line!
3.5 Test progression

Optional, discard this section if you don’t use it
The tests progression depends on the testing phase:

· Unit tests:

· The testing tool automatically sets the test progression. There is no dependency between unit tests.

· Integration tests: tests are executed according to the following rationale:

· Integration with interface A alone

· Integration with interface B alone

· Integration with interface A and B

· Factory tests: test progression is defined according to the following rationale:

· Inspection tests are done at first,

· Tests in category xxx are done afterwards,

· …

· End-user tests:

· Test progression is defined according operational scenarios.

Describe your own test progression and rationale as appropriate.
3.6 Test coverage

Optional, discard this section if you don’t use it (if you cover the whole software during each tests phase!)
Describe tests coverage rationale. Example:
Tests coverage depends on the testing phase:

· Automated tests cover all components of XXX software.

· Integration tests cover all interfaces requirements of XXX software.

· Alpha Tests cover all requirements defined in the SRS, excepted ….
· Beta Tests cover all requirements defined in the SRS,

· First Release Candidate (RC1) tests cover all requirements defined in the SRS

· Next Release Candidate (RCn) tests cover at minimum requirements impacted by the changes between RCn and RCn-1, plus all risk mitigation tests and non-regression tests.
The traceability between tests and requirements is listed in the §6 Requirements traceability.

A requirement may require more than one test to be verified. In this case, it appears in all tests, which verify it.
3.7 Data recording, post-processing, and analysis
Describe how raw test data are recorded, if necessary, post processed and analyzed.

For example, manual, automatic, and semi-automatic techniques for recording test results.

It may be a list of small manual procedures, or script files, which are launched before/after a session of tests or before/after a subset of tests.
Describe also where tests data is stored (scm repository, shared directory …).
3.8 Test identification and content

Each test is unique and contains:

· A unique identifier,

· The tests category,

· A textual description of test objective,

· The traceability of the SRS requirement(s),

· The verification method (I, A, D, T),

· Data recording, post-processing and analysis procedure,

· Assumptions and constraints, if any

· Safety, security and privacy concerns, if any.

The identifier has the following structure:

· Define your own unique identifiers.

· For example, concat the chars “T-“, the srs requirement ID being tested, “-”, and an incremental number (if more than 1 test is need to verify the requirement).

A test identifier is unique. If a test has to be completely redefined between two versions of this test plan, the previous reference is cancelled and a new identifier is attributed to the test.

4 Planned tests

For each phase, a list of tests is defined with an order of execution if necessary.

4.1 Tests Phase xxx

4.1.1 Tests coverage

Optional, discard this section if you don’t use it
The tests of phase xxx cover the following range:

· For example: interfaces and critical requirements

· Requirements of §x and §y of SRS

· A functional domain

· All requirements

4.1.2 Planned tests

Planned tests of phase xxx are listed in the table below. They are executed in the same order.
Fill the table with your tests,
	Identifier
	Description
	M
	Category

	T-SRS-REQ-010-1
	Verify that XXX …
	I
	xxx

	T-SRS-REQ-010-2
	Verify that XXX …
	I
	yyy

	T-SRS-REQ-020-1
	Verify that XXX …
	D
	Yyy

	T-SRS-REQ-030-1
	Verify that XXX …
	D
	Yyy


Tests are fully described in the software tests description (STD) document.

4.2 Tests Phase yyy

Repeat the pattern for each phase
4.3 Tests Phase zzz

Repeat the pattern for each phase
5 Tests schedules

This is either described in the project management plan, or here, or both, if some details were missing when the project management plan was written.
Discard this section if it is already in the project management plan
The schedule for conducting the tests is the following:

You may add a graphical representation of the schedule (gantt, …)
Phase xxx:

· Set-up and installation of platform: from yyyy/mm/dd to yyyy/mm/dd

· Installation, copy of tests data

· Pre-tests, personnel training, dry-run

· Tests readiness review

· Tests execution

· Intermediate reviews

· Final test review

Phase yyy:

· Set-up and installation of platform: from yyyy/mm/dd to yyyy/mm/dd

· Installation, copy of tests data

· Pre-tests, personnel training, dry-run

· Tests readiness review

· Tests execution

· Intermediate reviews

· Final test review

6 Verification methods

Discard this section if you don’t want to have verification methods attached to your requirements and tests.
The verification methods of the requirements are defined below:

· Inspection (I): control or visual verification

· Control of the physical implementation or the installation of a component. The control verifies that the implementation or the installation of a component is compliant with the requirements of diagrams.
· Control of the documentation describing a component. The control verifies that the documentation is compliant with the requirements.

· Analysis (A): verification based upon analytical evidences

· Verification of a functionality, performance or technical solution of a component by analyzing the data collected by tests in real conditions, by simulation of real conditions or by a analysis report.
· Analysis of test data or of design data is used as appropriate to verify requirements.

· The verification is based upon analytical evidences obtained by calculations, like modeling, simulation and forecasting.
· Analysis is used when an acceptable level of confidence cannot be established by other methods or if analysis is the most cost-effective solution.

· Demonstration (D): verification of operational characteristics, without quantitative measurement

· Verifying a requirement by demonstration implies that the required functionality specified by a requirement is complete.

· Demonstration is used when quantitative measurement is not required for verification of the requirements
· Demonstration includes the control of the technical solutions specified by the non-functional requirements.

· Test (T): verification of quantitative characteristics with quantitative measurement

· Verifying a functionality, performance or technical solution of a component by executing testing scenarios in predefined, controlled and traceable testing conditions.
· Tests require the use of special equipment, instrumentation, simulation techniques, or the application of established principles and procedures,

· Data produced during tests is used to evaluate quantitative results and compare them with requirements.
Note: do not mistake the two meanings of the word “test” in this document:

· The method of verification, named Test and abbreviated (T), as defined above.

· A test, or test case, is a sequence of actions to verify a requirement. Tests are defined in the software test plan.
Examples of tests methods:
Inspection:
· Verify that the color of background is blue,

· Verify that the user manual has the CE mark on its cover

· Verify that the PC has 4Gb memory
· Verify that firmware version on electronic card is 1.0.1
Demonstration

· Verify that when the user closes the window, a confirmation message appears

· Verify that the file is saved in the output directory

· Verify that the result is shown

· Verify that if a value is out of range, a warning is displayed
Analysis:

· Verify that the statistical distribution of results of xxx algorithm is a Gaussian with mean=x and stdev=y, when input data are blah blah

· Verify that the linear regression of results of xxx algorithm is a line which value is 1 on the y-axis, at zero on the x-axis, 

Test:

· Verify that a file of 1Gb is processed in less than 3s

· Verify that the response time of the server is 15ms with 20 simultaneous requests

Rule of thumb for software, 80% of requirements are verified by demonstration, 15% by inspection and 5% by analysis or test methods.
7 Requirements traceability

Add here the traceability of SRS requirements.
	Identifier
	Description
	SRS Requirement
	M

	T-SRS-REQ-010-1
	Verify that XXX …
	SRS-REQ-010
	I

	T-SRS-REQ-010-2
	Verify that XXX …
	SRS-REQ-010
	I

	T-SRS-REQ-020-1
	Verify that XXX …
	SRS-REQ-020
	D

	T-SRS-REQ-030-1
	Verify that XXX …
	SRS-REQ-030
	D


The verification methods (I,A,D,T) in this table shall match the verification methods defined in the previous section. If you don’t want to identify verification methods, remove the column



More templates to download on the:





� HYPERLINK "http://blog.cm-dm.com/pages/Software-Development-Process-templates" ��Templates Repository for Software Development Process (click here)�





Or paste the link below in your browser address bar:


http://blog.cm-dm.com/pages/Software-Development-Process-templates





This work is licensed under the:


Creative Commons Attribution-NonCommercial-NoDerivs 3.0 France License: http://creativecommons.org/licenses/by-nc-nd/3.0/fr/





Waiver:


You can freely download and fill the templates of blog.cm-dm.com, to produce technical documentation. The documents produced by filling the templates are outside the scope of the license. However, the modification of templates to produce new templates is in the scope of the license and is not allowed by this license.





To be compliant with the license, I suggest you to keep the following sentence at least once in the templates you store, or use, or distribute:


This Template is the property of Cyrille Michaud License terms: see http://blog.cm-dm.com/post/2011/11/04/License





Who am I? See my linkedin profile:


http://fr.linkedin.com/pub/cyrille-michaud/0/75/8b5





You can remove this first page when you’ve read it and acknowledged it!





Thank-you for downloading the


Software Tests Plan Template!








This Template is the property of Cyrille Michaud

License terms : see http://blog.cm-dm.com/post/2011/11/04/License

